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Dynamics of dissipative ordered fluids

André M. Sonnet and Epifanio G. Virga
Dipartimento di Matematica, Istituto Nazionale di Fisica della Materia, Universita` di Pavia, Via Ferrata 1, I-27100 Pavia, Italy

~Received 11 April 2001; published 27 August 2001!

A variational principle is proposed that allows to derive the equations of motion for a fluid with a general
microstructure described by a tensorial order parameter. The only constitutive ingredients are the densities of
the free energy and the dissipation, both subject to appropriate invariance requirements. As an illustration, it is
shown how the hydrodynamic theory for uniaxial nematic liquid crystals can be derived within this setting.
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I. INTRODUCTION

Many soft materials can be modeled as fluids with a te
sorial order parameter. The clearest example of these is
haps a nematic liquid crystal, whose biaxial states, wh
preferably occur around defects or under shear, are desc
by a second-rank alignment tensor~see, e.g.,@1#, Chap. 2 and
@2#!. When the nematic is uniaxial with constant scalar or
parameter, it can be described by adirector, and its dynamics
has long been understood in terms of balances of linear
angular momenta, also including the microstructure of
local material element@3–5#. Moreover, the dynamics o
uniaxial nematics with variable scalar order was treated
depth by Ericksen@6#. However, a rational systematic theo
to arrive at the evolution equations for more general diss
tive microstructures is still missing. Presumably, this is
because simply balancing linear and angular momenta d
not suffice to predict the evolution of the system when
microstructure fails to be vectorial.

Various avenues have already been taken to arrive at
ticular equations for the full second-rank alignment tens
Using methods of nonequilibrium thermodynamics, He
@2,7# proposed a theory, which was later generalized by H
and Pardowitz to include spatial variations@8# ~see also
@9,10# for the homogeneous case and@11,12# for a discussion
of the foundations of this approach!. A further extension of
this model was considered in@13,14#. In a different vein,
starting from a Fokker-Planck equation for the orientatio
distribution function proposed by Hess@15#, several authors
used closure approximations to obtain evolution equati
for the second-rank alignment tensor@15–17#. More recently,
plastic flow has been studied@18# by using a fourth-rank
tensor to describe the order, which calls once more fo
general theory of ordered fluids.

For uniaxial nematics, one way to arrive at the equatio
of motion without positing balance equations was poin
out by Vertogen@19#. His development is based on an an
ogy with classical Lagrange mechanics with Rayleigh dis
pation. While this analogy is sufficient to derive the visco
stress, it gives neither the elastic stress nor the couple st
and no information is gained regarding proper boundary c
ditions at free surfaces. Furthermore, the equations of mo
for the flow and the director are treated in somewhat diff
ent ways, see also@20#, p. 145.

Here we propose a general theory for dissipative flu
described by an order tensor of arbitrary rank. Rather t
1063-651X/2001/64~3!/031705~10!/$20.00 64 0317
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positing by analogy the evolution equations, we arrive
them from a variational principle, which, when applied
mass-point dynamics, gives the classical Lagrange-Rayle
equations. For continua, this theory leads to the evolut
equations along with the appropriate boundary condition

This principle is posited in Sec. II. In Sec. III, we apply
to a class of continua with dissipative microstructure: t
class is chosen so as to encompass nematic liquid crys
among many other materials. We arrive at a set of gen
dynamical equations, and we show how these can subs
the balance equations for linear and angular momenta.
advantage of our method is that it introduces only few co
stitutive laws: both elastic and viscous stresses, for exam
are obtained from the elastic and dissipated energies.

For simplicity, here we generally consider unconstrain
order tensors; special constraints can be treated with the
of appropriate Lagrange multipliers. They are needed in
case illustrated in Sec. IV, where we show, as an exam
how the well-known balance equations of nematodynam
can be retraced within the theory presented here. A gene
zation of our method to fluids with arbitrary order paramet
on differentiable manifolds is described in@21#.

II. VARIATIONAL PRINCIPLE

We aim at extending to a class of dissipative ordered m
dia the method originally put forward by Rayleigh to d
scribe dissipative discrete systems@22#. The essence of Ray
leigh’s approach is to balance all generalized forces
Lagrange equations, including inertia, against friction
forces that derive from a dissipation function and are lin
in the generalized velocities. We first illustrate this basic b
ance taking a holonomic dynamical system as a parad
and then further confining attention to systems subject
conservative active forces. In general, a variational princi
allows one to arrive directly at the equations of motion
cluding the appropriate dissipative terms. This principle w
be applied in Sec. III to a variety of dissipative order
fluids.

A. Basic balance

Essentially, our development rests on two assumptio
first, that the total mechanical power, excluding dissipati
can be written as the product of generalized forces by g
©2001 The American Physical Society05-1



nc
en

n
ic

To
os

s
d

in

ch

an
ta

ve

d

ne
nc-
er,
ral-

s
d
n-
ing

ia-

y

, so

n-
l

f

ANDRÉ M. SONNET AND EPIFANIO G. VIRGA PHYSICAL REVIEW E64 031705
eralized velocities, and second that these forces are bala
by frictional forces that possess a quadratic velocity pot
tial.

Consider a holonomic dynamical system described bym

generalized coordinatesq1 , . . . ,qm . We denote byq and q̇
the vectors inRm of the generalized coordinates and the ge
eralized velocities. We assume that the total mechan
powerW can be written as

W5X•q̇5(
i 51

m

Xiq̇i , ~1!

where Xi are the generalized forces, including inertia.
help in identifying the generalized forces, we may supp
that X remains unchanged under time reversal, whileq̇
changes its sign.

When in addition to the mechanical forcesX, the system
is subject to dissipation, frictional generalized forcesY are
also at work that satisfy the balance equation

X1Y50. ~2!

Here we make the constitutive assumption that the forceY

are linear in the velocitiesq̇ and that they can be derive
from a positive-definite quadratic formR according to

Y5
]R
]q̇

. ~3!

The velocity potentialR is called the Rayleighdissipation
function. The equations of motion are then obtained by
serting Eq.~3! into Eq. ~2! as

X1
]R
]q̇

50. ~4!

Taking the inner product of both sides of Eq.~4! with q̇
yields the balance of energy in the form

W12R50, ~5!

sinceR is a homogeneous function of degree two, for whi

]R
]q̇

•q̇52R. ~6!

Sometimes thetotal dissipationD is used in Eq.~5! instead
of 2R.

B. Conservative forces

When all active forces are conservative the total mech
cal powerW can be written as the rate of change of the to
mechanical energyF. Let V5V(q) be the potential energy
of the system andT5T(q,q̇) its kinetic energy, which is
assumed to be a positive-definite quadratic form in the
locities q̇. A standard computation yields
03170
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Ḟ5Ṫ1V̇5(
i 51

m S d

dt

]L

]q̇i

2
]L

]qi
D q̇i , ~7!

with the Lagrange functionL5T2V, and so the generalize
forces conjugate to the velocitiesq̇ are here found to be

X5
d

dt

]L

]q̇
2

]L

]q
. ~8!

The equations of motion~4! then read simply as

d

dt

]L

]q̇
2

]L

]q
1

]R

]q̇
50, ~9!

which is the standard text-book form~cf., e.g.,@23#, p. 231!.
Clearly, the energy balance~5! still holds with W5Ḟ.

It should be noticed that, sinceT is a positive-definite
quadratic form inq̇ andV is independent ofq̇, by Eq.~8! X

is linear in q̈ and

det
]X

]q̈
5” 0;

thus q̈ can also be expressed in terms ofX, q, andq̇ as

q̈5B~q,q̇!X1a~q,q̇! ~10!

~cf. @23#, p. 40!, whereB is an invertible matrix inRm3m and
d is a vector inRm.

C. Variational formulation

To generalize Eq.~4! so as to encompass continua, o
can argue that the partial derivative of the dissipation fu
tion has to be replaced by a functional derivative. Howev
care has to be taken in appropriately identifying the gene
ized forces in the bulk and on the boundary.

We show here how the discrete case~4! can be derived
from an appropriate variational principle forR, where the
configuration remains unchanged, while both the velocitieq̇

and the accelerationsq̈ are subject to judiciously constraine
variations. This principle can then directly be applied to co
tinua and it indeed yields the recipe outlined in the preced
paragraph.

For a given configuration we conceive a system of var
tions dq̇ of the actual velocity vectorq̇ that leaves both the
generalized forcesX and their powerW unchanged. This
implies variationsdq̈ of q̈ to be chosen accordingly: the
eventually result in linear combinations of the variationsdq̇,
cf. Eq.~10!. The constraint on the power inputW can then be
treated in the standard way through a Lagrange multiplier
that q̇ may be arbitrarily perturbed.

In the actual evolution of the system through a given co
figuration,q̇ is such thatR attains its minimum relative to al
virtual values it can achieve, once both the forcesX and their
powerW arefrozenin their actual state. This is a principle o
5-2
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DYNAMICS OF DISSIPATIVE ORDERED FLUIDS PHYSICAL REVIEW E64 031705
minimum restrained dissipation, which in a similar form has
also been used in irreversible thermodynamics@24,25#. We
first requireR to be stationary with respect to this spec
class of variations. This leads to

dR1ldW5S ]R
]q̇

1lXD •dq̇50 ~11!

for all variationsdq̇, wherel is a Lagrange multiplier. Since
dq̇ is arbitrary, Eq.~11! amounts to

lX1
]R
]q̇

50. ~12!

The value ofl can be determined by taking the inner produ
of both sides of Eq.~12! with q̇ and requiring the energy
balance~5! to hold. This shows thatl51, and the stationar
ity conditions forR in Eq. ~12! just become the equations o
motion ~4!. These are indeed minimality conditions forR
constrained to the linear subspace where bothX andW are
prescribed, forR, being a positive-definite quadratic form o
q̇, has there a minimizer as the unique stationary point.

III. DISSIPATIVE MICROSTRUCTURES

In this section we apply to ordered fluids the variation
principle stated in the preceding section. Our aim is to arr
at the evolution equations for a class of dissipative mic
structures by positing in each case the appropriate en
and dissipation functionals, which in our development
the only relevant constitutive quantities for these materia

We consider a continuum that occupies the regionB in
space with smooth boundary]B, bearing an additional mi-
crostructure described by an order tensorO. Here the order
parameter space is the linear space of allnth-rank tensors.
Though the theory we present can equally be developed
letting the order tensor vary on a differentiable manifold, t
gain in generality is little compared with the growth in th
mathematical apparatus@21#. On the other hand, as shown
Sec. IV, constraints onO can generally be treated by mea
of appropriate Lagrange multipliers~see also@26# and@27#!.
In our setting, the natural candidates for the generalized
locities are the mass velocityv and the material time deriva
tive

Ȯ5
]

]t
O1~“O!v ~13!

of the order tensorO. In Cartesian components,

ȮI5
]

]t
OI1OI , jv j ,

where a comma denotes differentiation with respect to
space variable, the summation convention for repeated i
ces applies, andI is a multi-index,I 5(I 1 , . . . ,I n).

The dissipation function characterizes frictional proces
that are intrinsic to the material and that should therefore
03170
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independent of the observer. This requires the dissipa
function to be invariant under all changes of frame, rep
sented by Euclidean transformations acting on all posit
vectorsx as

x* 5Q~ t !x1b~ t !, ~14!

whereQ is an orthogonal tensor andb a vector, both arbi-
trarily depending on time. The dissipation function will b
automatically invariant, when it is built using onlyindifferent
tensors, i.e., those tensors that transform in the usual
under the change of frame~14!, see, e.g.,@28#, Chap. 1. One
example is theshearingtensor

D5 1
2 @“v1~“v !T#,

as one finds thatD* 5Q(t)DQ(t)T. Apart fromD, we further
need an indifferent time derivative of the order tensorO. The

simplest one is thecorotational derivative O7 . It describes
how the order changes in a frame that is rotating with
body. In Cartesian components, it can be written as

O° I5ȮI2 (
k51

n

WI kjOI
k
j , ~15!

where

W5 1
2 @“v2~“v !T#

is the vorticity tensor and, for any given multi-indexI , I k
j

5(I 1 , . . . ,,I k21 , j ,I k11 , . . . ,I n) is the same multi-index as
I, apart from havingj as kth-entry. In Eq. ~15! the sum
clearly extends over all entries ofI.

A more general frame-indifferent rate ofO is thecodefor-
mational time derivative

ÔI5O° I1 (
k51

n

akDI kjOI
k
j . ~16!

Here the coefficientsak are somehow constitutive: they de
termine to what extent the deformation of the fluid affects
microstructure. In general, whenO enjoys symmetry proper
ties, these are also inherited by its rate, and special relat
among theak could be required. Furthermore, when restr
tions on some traces ofO exist, additional terms will enter
Eq. ~16! to make these restrictions preserved in time.

A. Power input

We write the total energy stored inB as

F5E
B
FdV

with

F5r@ 1
2 v21f1s~r!1k~O,Ȯ!1x~O!#1W~O,“O!,

~17!
5-3
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ANDRÉ M. SONNET AND EPIFANIO G. VIRGA PHYSICAL REVIEW E64 031705
wherer is the mass density,f is the potential energy pe
unit mass of a body forcef52“f, s is the potential energy
associated with the compressibility of the material,k is the
kinetic energy of the microstructure, taken to be a quadr
form of Ȯ, x is the potential energy for the external actio
exerted onO, andW is the elastic energy connected with th
microstructure.W will in general be required to be frame
indifferent ~see Sec. III C below!. While the elastic energy
might in principle depend also on higher gradients of
order tensorO, to keep the following discussion simple, w
take into account only first gradients. The inclusion of high
gradients is feasible within our setting, but it would al
require the introduction of higher order forces and mome
in the bulk and on the surface@29#. The main features of ou
method are already evident with an energy density of
form ~17!.

We write the balance of mass in the usual way, that is

ṙ1r div v50. ~18!

Then, by the transport theorem, the time rate ofF is

Ḟ5E
B
H r~ v̇2f!•v1rM•Ȯ1S r

]x

]O
1

]W

]O D •Ȯ
1

]W

]“O
•~“O!•1~W2r2s8!div vJ dV, ~19!

wheres8ªds/dr, and use has been made of the fact thak

is a quadratic function ofȮ in arranging the microinertia pe
unit mass in the form

MªS ]k

]Ȯ
D •

2
]k

]O
~20!

~cf. ~7! and see also@27#, p. 19!. At variance with the La-
grangian paradigm, hereḞ fails to be the total power inpu
for the system; it must be supplemented with thesurface
powerW s, which for a movable boundary]B takes the gen-
eral form

W s5E
]B

$Xs
•v1Xs

•Ȯ%dA, ~21!

whereXs, Xs are generalized external forces associated w
the velocitiesv and Ȯ, respectively. WhileXs is a vector in
the ordinary space,Xs is an nth-rank tensor. Often the sur
face power derives from a surface potential, i.e., it can
represented as

W s5
d

dtE]B
Ws~x,O!dA,

whereWs is a scalar function of the position in spacex and
the order tensorO; clearly, in such a case

Xs5
]Ws

]x
and Xs5

]Ws

]O
.
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After some integrations by parts in Eq.~19!, by use of

~“O!•5“Ȯ2~“O!“v, ~22!

the total power input can be cast in the form

Ḟ1W s5E
B
$X•v1X•Ȯ%dV1E

]B
$~Xb1Xs!•v

1~Xb1Xs!•Ȯ%dA, ~23!

whereX, X, andXb, Xb are the generalized internal forces
the body and on its boundary, respectively.X and Xb are
nth-rank tensors, whileX and Xb are vectors in the three
dimensional space. In particular,

X5r~ v̇2f!2“~W2r2s8!1divS“O (
]W

]“OD ~24!

X5rS M1
]x

]OD1
]W

]O
2div

]W

]“O
~25!

and

Xb5~W2r2s8!n2S“O (
]W

]“ODn ~26!

Xb5
]W

]“O
n, ~27!

wheren is the outer unit normal to]B and

S“O (
]W

]“OD
i j

ªOI ,i

]W

]OI , j
. ~28!

This term shows how, because of Eq.~22!, the elastic energy
contributes to the generalized forceX conjugated tov. It will
become apparent in Sec. III C how Eq.~28! can be inter-
preted as an elastic stress.

It should be noted that when the velocity fieldv is subject
to a possibly differential constraint, bothX andXb may not
be uniquely determined by Eq.~23! and additional terms
may show up in Eqs.~24! and ~27!, see Sec. IV.

The special constrained variation of the total power d
fined in the preceding section here becomes

d~Ḟ1W s!5E
B
$X•dv1X•dȮ%dV1E

]B
$~Xb1Xs!•dv

1~Xb1Xs!•dȮ%dA. ~29!

B. Dissipation

In the present settingR is indeed a functional invarian
under all changes of frame~14!:

R5E
B
RdV.
5-4
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For any analytic dissipation functionR, this requirement
amounts to demand thatR be the sum of invariant homoge
neous terms. Thus we can assume thatR is a function bilin-
ear in Ô andD:

R5R~O,Ô,D!.

The variation of the dissipation function here takes
form

dR5E
BH ]R

]Ȯ
•dȮ1

]R

]“v
•“~dv !J dV, ~30!

sinced(“v)5“(dv). An integration by parts then change
Eq. ~30! into

dR5E
BH ]R

]Ȯ
•dȮ2divS ]R

]“v D •dvJ dV

1E
]B

S ]R

]“v
nD •dvdA. ~31!

Moreover, by the chain rule

]R

]Ȯ
5

]R

]Ô
+

]Ô

]Ȯ
1

]R

]D
+

]D

]Ȯ
5

]R

]Ô
~32!

and

]R

]“v
5

]R

]Ô
+

]Ô
]“v

1
]R

]D
+

]D

]“v
5

]R

]Ô
+

]Ô
]“v

1
]R

]D
. ~33!

Here the symbol+ denotes composition; for example
(@]R/]Ô#+@]Ô/]Ȯ#) I5@]R/]ÔJ#@]ÔJ /]ȮI #. Combining
these equations with Eqs.~29! and ~31!, we arrive at the
generalized form of Eq.~4! valid for a dissipative ordered
fluid:

5
X2divS ]R

]Ô
+

]Ô
]“v

1
]R

]DD 50

in B,

X1
]R

]Ô
50

~34a!

~34b!

and

5 Xb1Xs1S ]R

]Ô
+

]Ô
]“v

1
]R

]DD n50

on ]B,

Xb1Xs50

~35a!

~35b!

In particular, the boundary equations~35! deserve a com-
ment. When the regionB is not free to change in time, a
admissibledv vanish on]B, and so Eq.~35a! would not
properly follow from our reasoning; however, it can still b
regarded as valid, providedXs is interpreted as areactive
03170
e

generalized force exerted by the boundary. A similar conc
sion applies to Eq.~35b! and the generalized forceXs, when
O is prescribed on]B.

Finally, it should be noticed that in arriving at Eqs.~34!
and~35!, we have set equal to unity the Lagrange multipl
playing here the role ofl in Sec. II. That this is indeed
justified follows from Euler’s theorem on homogeneo
functions, by which

]R

]Ô
•Ô1

]R

]D
•D52R, ~36!

and the linearity of the relation between the pairs (Ô,D) and
(Ȯ,“v), which together with Eq.~36! ensures that

]R

]Ȯ
•Ȯ1

]R

]“v
•“v52R.

C. Classical balances

Equations~34! and ~35! together with Eqs.~24!–~27! are
the basic equations of this theory; in particular, use of E
~24! and~25! in Eq. ~34! yields the complete evolution equa
tions for the body. Classically this role is played by the b
ance equations for linear and angular momenta. Thoug
the present setting it would be illusory to derive from the
balances the evolution of complex microstructures such
the one described by a tensor of arbitrary rank, it rema
crucial to ascertain that the evolution predicted by this the
does not violate the classical balance equations. Here
show how these equations can indeed be recognized as v

The balance of linear momentum requires that

d

dtEC
rvdV5E

C
rf dV1E

]C
tdA ~37!

for any sub-bodyC, wheref is the body force per unit mas
and t is the contact force per unit area. For unstructur
continua, only the torques of the same forces as in Eq.~37!
enter the balance of angular momentum. When, howe
there is a microstructure connected with an internal rotat
of the material element, additional couples in the form
body and surface moments must be accounted for. The
eral form of the balance of angular momentum is then

d

dtEC
r~m1x3v !dV5E

C
r~x3f1k!dV1E

]C
~x3t1 l!dA,

where x is the position vector,rm is the intrinsic angular
momentum,k the body moment per unit mass, andl the
surface contact moment per unit area.

Whent andl at a given point are assumed to depend o
on the local surface normaln, by Cauchy’s tetrahedron argu
ment one can show that they can be expressed in terms
stress tensorT and a couple stress tensorL according to
5-5
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t5Tn, l5Ln. ~38!

Then, by use of the conservation of mass~18!, it is possible
to write the classical balance equations in point form as

rv̇5rf1div T ~39!

and

rṁ5rk2t1div L , ~40!

wheret is associated with the skew symmetric part ofT by
t i5e i jkTjk , with e i jk the components of Ricci’s alternato
In the absence of internal rotational degrees of freedomṁ, k,
andL vanish and Eq.~40! reduces to the usual requireme
that the stress tensor be symmetric.

Using the generalized force~24! in the equation of motion
~34a!, one finds that this latter takes the form~39! when the
stress tensor is chosen to be

T5~W2r2s8!I2“O (
]W

]“O
1

]R

]Ô
+

]Ô
]“v

1
]R

]D
, ~41!

whereI is the identity tensor. With this choice for the stres
it follows from Eqs.~26! and~35a! that the traction on]B is
balanced by the surface forceXs; accordingly, it would van-
ish on a free surface.

To make the balance of angular momentum explicit,
enforce the requirement that the elastic energy densityW be
invariant under change of frame. This can be written as

W~OI ,OI , j !5WS OJ )
m51

n

QI mJm
,OJ,kQjk )

m51

n

QI mJmD ,

whereQ is an arbitrary rotation. Using essentially the sam
arguments as in@3#, one finds that this leads to

e i jkF (
m51

n S ]W

]OI
m
j

OI
m
k 1

]W

]OI
m
j ,l

OI
m
k ,l D 1

]W

]OI , j
OI ,kG50.

~42!

Introducing a generalized vector-valued product of two t
sors of the same rank, defined by

~A3B! iªe i jk (
p51

n

AI
p
j BI

p
k,

Eq. ~42! can also be written in compact form as

O3
]W

]O
1“O3

]W

]“O
50.

In a similar way, by requiring the kinetic energy of th
microstructurek to be the same in all inertial frames, w
obtain
03170
,
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O3
]k

]O
1Ȯ3

]k

]Ȯ
50. ~43!

We are now in a position to givet an alternative form.
Starting from the stress~41!, we find

t i5e i jkS ]R

]ÔI

]ÔI

]v j ,k
1

]W

]OI , j
OI ,kD , ~44!

where use has also been made of the identitye i jkAjk5
2e i jkAk j . By Eqs.~34b! and~16!, the first term on the right-
hand side of Eq.~44! can be written as

e i jk

]R

]ÔI

]ÔI

]v j ,k
5e i jkXI (

p51

n

d j I p
OI

p
k5e i jk (

p51

n

XI
p
j OI

p
k,

whereXI are the components ofX. Thus, upon inserting Eq
~25!, Eq. ~44! becomes

t i5e i jkH r (
p51

n S MI
p
j 1

]x

]OI
p
j
D OI

p
k1 (

p51

n F ]W

]OI
p
j

2S ]W

]OI
p
j ,m

D
,m

GOI
p
k1

]W

]OI , j
OI ,kJ

5e i jkr (
p51

n S MI
p
j 1

]x

]OI
p
j
D OI

p
k

2S e i jk (
p51

n
]W

]OI
p
j ,m

OI
p
kD

,m

, ~45!

where the second equation follows from the identity~42!.
The balance of angular momentum~40! is indeed satis-

fied, if we can set

ṁ5O3M, ~46!

provided we further interpretk andL as follows:

k52O3
]x

]O
~47!

and

Li j 5e ikl (
p51

n

OI
p
k

]W

]OI
p
l , j

. ~48!

Actually, by Eqs.~20! and~43!, Eq. ~46! properly definesm
as

m5O3
]k

]Ȯ
. ~49!

Moreover, it follows from Eqs.~48! and ~38! that
5-6
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l5O3S ]W

“O
nD . ~50!

It is clear from Eq.~50! that the couple stress depends on
on the elastic energy. The absence of any viscous contr
tion to the couple stress is a consequence of“Ȯ being ex-
cluded from the dissipation~cf. @30# for an analogous resul
in a restricted setting!.

IV. UNIAXIAL NEMATICS

In this section we make specific Eqs.~34! and ~35! for a
special family of anisotropic fluids, the uniaxial nematic li
uid crystals. In the case where the scalar order paramet
constant, the dynamical equations for these materials h
long been established: they were obtained as balance e
tions for linear and angular momenta, the latter also incl
ing the microstructural contributions@3–5#. The dynamics of
uniaxial nematics with variable order was treated much la
by Ericksen@6#, who posited an additional balance equati
for the scalar order parameter.

Our perspective here is different; the fact that for bo
these theories we shall arrive at the same evolution equa
from an independent principle shows that all classical ne
todynamics falls within the range of validity of this principle
Furthermore, it indicates that even when no guidance
gained by analogy to the balance laws of classical continu
mechanics this principle is still able to establish the ba
equations of the theory. This is especially important for ne
atics with tensorial order@31#. Moreover, we shall illustrate
here by example how to overcome the difficulties that ar
when constraints are prescribed on the order tensor and
velocity field.

We proceed in two steps. First we treat in Sec. IV A t
classical case with constant scalar order. We then ex
these results in Sec. IV B to account also for a variable sc
order.

A. Constant scalar order parameter

A nematic liquid crystal is a fluid consisting of effective
uniaxial molecules that exhibit the tendency to align th
long axes in a common direction. It is commonly describ
by a unit vector fieldn, the nematic director, which indicate
the local average orientation~see@32–34# for the origins of
the equilibrium theory!.

Most processes connected with the reorientation of
director are slow compared with the frequency of sou
waves. It is then sufficient to consider the nematic fluid
incompressible. The mass densityr is then a constant, an
the divergence of the velocity fieldv must vanish to make
the mass continuity equation satisfied. This amounts to s
ing that the velocity gradient“v is traceless. We neglect th
energy connected with the director rotation and write
total energy as

F5E
B
@ 1

2 rv21W~n,“n!#dV,
03170
u-

is
ve
ua-
-

r

ns
a-

is
m
c
-

e
he

nd
ar

r
d

e
d
s

y-

e

where all external actions have been omitted for simplici
Our first objective is to decompose the powerḞ into con-

jugated velocities and forces. We choose as velocitiesv and
the material time derivative of the directorṅ. Here, again
with the aid of Eqs.~13! and ~22!, Eq. ~19! becomes

Ḟ5E
B
H rv̇•v1S ]W

]n
2div

]W

]“nD •ṅ

2S ~“n!T
]W

]“nD •“vJ dV1E
]B

S ]W

]“n
nD •ṅdA.

~51!

Sinceṅ is orthogonal ton and“v is traceless, the powerḞ
remains unchanged whenever the integrands in Eq.~51! are
altered as follows:

Ḟ5E
B
H rv̇•v1S ]W

]n
2div

]W

]“n
1mnD •ṅ

2S ~“n!T
]W

]“n
1pI D •“vJ dV

1E
]B

S ]W

]“n
n1mbnD •ṅdA, ~52!

wherem, mb , andp are arbitrary scalar fields. An integratio
by parts in Eq.~52! then allows to identify the generalize
forces

X5rv̇1divS ~“n!T
]W

]“n
1pI D , ~53!

X5
]W

]n
2div

]W

]“n
1mn, ~54!

Xb5S ~“n!T
]W

]“n
1pI Dn, ~55!

Xb5
]W

]“n
n1mbn, ~56!

where clearlym, mb , andp appear as Lagrange multiplier
corresponding to the constraints that bothX and Xb be or-
thogonal ton, andv be a solenoidal field.

Following the general format set forth in Sec. III, we a
sume that the dissipation density is a functionR

5R(n,n°,D) bilinear in the symmetric partD of “v and the

corotational time derivativen° of the director. The latter is
represented as

n°5ṅ2v3n,

wherev5 1
2 curlv is the axial vector of the skew-symmetr

part W of “v, so thatn°5ṅ2Wn.
Equation~36! here reads as
5-7



t o

e

q
f

for

nts

tis-
m a
the

al

if-

r-

id
eter

-
-
lar
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]R

]n°
•n°1

]R

]D
•D52R. ~57!

Similarly, Eqs.~32! and ~33! become

]R

]ṅ
5

]R

]n°
~58!

and

]R

]“v
5

1

2 S n^
]R

]n°
2

]R

]n°
^ nD 1

]R

]D
. ~59!

By combining Eqs.~53!–~56! with ~58! and~59!, we can
now write Eqs.~34a! and ~35a! in the following form

H rv̇5div T

]W

]n
2div

]W

]“n
1

]R

]n°
1mn50

in B,

~60a!

~60b!

and

H Tn1Xs50

]W

]“n
n1mbn1Xs50

on ]B,

~61a!

~61b!

with the stress

T52pI2~“n!T
]W

]“n
1

1

2 S n^
]R

]n°
2

]R

]n°
^ nD 1

]R

]D
.

~62!

It is clear from Eq.~62! that the extra-stressT1pI can be
decomposed into the sum of anelasticstress

T(e)
ª2~“n!T

]W

]“n

and aviscousstress

T(v)
ª

1

2 S n^
]R

]n°
2

]R

]n°
^ nD 1

]R

]D
.

The axial vector associated with the skew-symmetric par

T(v) is 2n3(]R/]n°), with the meaning of a viscous torqu
on n; hence Eq.~60b!, once written in the equivalent form

n3S div
]W

]“n
2

]W

]n
2

]R

]n°
D 50,

can be interpreted as a balance of torques acting on the
rector. A similar interpretation can also be given for E
~61b!. Moreover, according to Eq.~48! the components o
the couple stress tensor read as
03170
f

di-
.

Li j 5e iklnk

]W

]nl , j
.

We have thus recovered in our setting the classical theory
nematodynamics~cf. especially Eqs.~2.4! and~5.6! of @30#!.

The most general dissipation function bilinear inn° andD
can be found by considering all possible scalar invaria
that can be built from these quantities and the directorn.
This function can be written as

R5 1
2 g1n°21g2n°•Dn1 1

2 g3~Dn!21 1
2 g4 tr D21 1

2 g5~n•Dn!2,
~63!

where theg ’s are constants. It readily follows that

]R

]D
5 1

2 g2~n° ^ n1n^ n° !1 1
2 g3~Dn^ n1n^ Dn!1g4D

1g5~n•Dn!n^ n

and

]R

]n°
5g1n°1g2Dn.

The form of the viscous stress commonly used is

T(v)5a1~n•Dn!n^ n1a2n° ^ n1a3n^ n°1a4D1a5Dn^ n

1a6n^ Dn,

where thea ’s are Leslie’s coefficients@cf. @30#, Eq. ~4.6!#.
This expression is the same as ours, provided that

a15g5 , a25 1
2 ~g22g1!, a35 1

2 ~g21g1!,

a45g4 , a55 1
2 ~g32g2!, a65 1

2 ~g31g2!,

where it follows that a62a55a21a3, known as the
Onsager-Parodi relation. This relation is automatically sa
fied because the generalized viscous forces derive fro
potentialR. Here indeed Onsager’s principle reduces to
symmetry in the mixed second derivatives ofR.

Finally, it is worth remarking that using a codeformation

time derivativen̂5n°1aDn rather thann° in constructing the
dissipation function would in general result in ordering d
ferently the same terms in Eq.~63!; in particular, whenever
both g2 andg3 do not vanish, the theory would not be fo
mally affected.

B. Variable scalar order parameter

The local degree of order of a uniaxial nematic liqu
crystal can be measured by the Maier-Saupe order param
S, which is given by

S5^P2~n•u!&, ~64!

where the bracketŝ•••& indicate a local orientational aver
age over the molecules andP2 is the second Legendre poly
nomial inn•u, the cosine of the angle between the molecu
5-8
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figure axisu and the nematic directorn. S can take values
between21/2 and 1. To describe the average orientatio
along with the scalar order, it is convenient to employ th
uniaxial second-rank alignment tensor

a5S~n^ n2 1
3 I !, ~65!

which also reflects thenematic symmetry, i.e., the physical
equivalence ofn and 2n. By use of Eq.~65!, a theory for
uniaxial nematics with variable order is obtained naturally
a special case of a theory for the full second-rank alignme
tensor@31#. However, here we prefer to treatS andn as two
independent variables. In this way we can profit from th
results of the preceding subsection.

The energy connected with the order is now a functio
W5W(S,“S,n,“n), and it will in general contain not only
elastic terms, but also a Landau-deGennes potential inS.
Using the same method illustrated above, one finds an ad
tional term in the generalized force~53!, which here becomes

X5rv̇1divS ~“n!T
]W

]“n
1“S^

]W

]“S
1pI D . ~66!

Equation ~54! remains unchanged, and a third generalize
force conjugated toṠ is found as

X(S)5
]W

]S
2div

]W

]“S
, ~67!

which enters the balance equation

X(S)1
]R

]Ṡ
50. ~68!

SinceS is scalar, its material time derivativeṠ is frame-
indifferent, and we can write the dissipation function asR

5R(n,n°,S,Ṡ,D). The most general form this can take is

R5b1Ṡn•Dn1 1
2 b2Ṡ2 ~69!

1 1
2 g1n°21g2n°•Dn

1 1
2 g3~Dn!21 1

2 g4 tr D21 1
2 g5~n•Dn!2,

~70!

where now allb ’s andg ’s are arbitrary functions ofS.
It then follows that the equations of motion still hold in

the form ~60!, where the stress is given by the tensor in E
~62! plus the one related to the scalar order:

T(S)52“S^
]W

]“S
1b1Ṡn^ n. ~71!
03170
n
e

s
nt
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n
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d

.

Furthermore, the additional equation~68! becomes

]W

]S
2div

]W

]“S
1b1n•Dn1b2Ṡ50. ~72!

Apart from the microinertia, which we have neglected he
the evolution equations that we find are the same as Eri
en’s @6#, where again the extra Onsager relation he derive
automatically satisfied.

V. CONCLUSIONS

We adopted a variational principle to extend the class
Lagrange-Rayleigh equations of mass-point dynamics to
ids with dissipative microstructure, where the internal or
is described by a tensor of arbitrary rank. In this way, star
only from the free energy and the dissipation, we arriv
directly at the evolution equations for the fluid along with t
appropriate boundary conditions.

We compared this theory to the classical one, where
evolution equations arise from writing balances together w
constitutive assumptions. It turned out that the flow equa
can always be interpreted as the balance of linear mom
tum, where the stress tensor derives directly from the
energy and the dissipation. Similarly, the balance of ang
momentum follows from the evolution equation for the ord
tensor: We made use of invariance properties of both ela
and kinetic energies to identify the internal angular mom
tum and both body and contact couples.

While it is always possible to reconcile our approach w
the classical balance equations, the reverse does not
true. In general, the internal order has more than just
rotational degrees of freedom, and so additional balances
constitutive relations would be needed.

As a specific example, we showed how the hydrodyna
theory for uniaxial nematic liquid crystals is derived with
our setting. In particular, this illustrates how special co
straints can be treated. For a constant scalar order param
we found the stress tensor in the form used in the Ericks
Leslie-Parodi theory. While one can reconcile in the bulk t
stress with the symmetric stress of the Harvard group@1#, p.
208, by adding a divergence-free term, this is not possible
the boundary because it would contradict the boundary c
ditions. In the more general case of variable degree of or
tation we found the additional contributions to the stress
a balance equation for the scalar order parameter in the
proposed by Ericksen@6#.
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